Плазма что это такое в медицине

Плазма крови: состав и функции



Плазма крови – это вязкая однородная жидкость светло-желтого цвета. Она составляет около 55-60% от общего объема крови. В виде взвеси в ней находятся клетки крови. Обычно плазма прозрачна, но после приема жирной пищи может быть слегка мутной.

Оглавление:

Состоит из воды и растворенных в ней минеральных и органических элементов.

Состав плазмы и функции ее элементов

Большую часть плазмы составляет вода, ее количество – примерно 92 % от всего объема. Кроме воды, она включает следующие вещества:

Около 8% от объема составляют белки, которые являются основной частью плазмы. В ней содержится несколько видов белков, основными из них являются:

  • альбумины – 4-5%;
  • глобулины – около 3%;
  • фибриноген (относится к глобулинам) – около 0,4%.

Альбумин

Альбумин – основной белок плазмы. Отличается малой молекулярной массой. Содержание в плазме – более 50% от всех белков. Образуются альбумины в печени.


  • выполняют транспортную функцию – переносят жирные кислоты, гормоны, ионы, билирубин, лекарственные препараты;
  • принимают участие в обмене веществ;
  • регулируют онкотическое давление;
  • участвуют в синтезе белков;
  • резервируют аминокислоты;
  • доставляют лекарственные препараты.

Глобулины

Остальные белки плазмы относятся к глобулинам, которые являются крупномолекулярными. Вырабатываются они в печени и в органах иммунной системы. Основные виды:

Альфа-глобулины связывают билирубин и тироксин, активизируют производство белков, транспортируют гормоны, липиды, витамины, микроэлементы.

Бета-глобулины связывают холестерол, железо, витамины, транспортируют стероидные гормоны, фосфолипиды, стерины, катионы цинка, железа.

Гамма-глобулины связывают гистамин и участвуют в иммунологических реакциях, поэтому их называют антителами, или иммуноглобулинами. Существует пять классов иммуноглобулинов: IgG, IgM, IgA, IgD, IgE. Вырабатываются в селезенке, печени, лимфоузлах, костном мозге. Они отличаются друг от друга биологическими свойствами, структурой. Имеют разные способности по связыванию антигенов, активированию иммунных белков, имеют разную авидность (скорость связывания с антигеном и прочность) и способность проходить через плаценту. Примерно 80% всех иммуноглобулинов оставляют IgG, которые обладают высокой авидностью и являются единственными из всех, способными проникать через плаценту. Первыми у плода синтезируются IgM. Они же появляются первыми в сыворотке крови после большинства прививок. Обладают высокой авидностью.

Фибриноген является растворимым белком, который образуется в печени. Под воздействием тромбина он превращается в нерастворимый фибрин, благодаря которому формируется сгусток крови в месте повреждения сосуда.



Другие белки

Кроме вышеперечисленных, в плазме содержатся и другие белки:

  • комплемент (иммунные белки);
  • трансферрин;
  • тироксинсвязывающий глобулин;
  • протромбин;
  • С-реактивный белок;
  • гаптоглобин.

Небелковые компоненты

Кроме этого плазма крови включает небелковые вещества:

  • органические азотсодержащие: аминокислотный азот, азот мочевины, низкомолекулярные пептиды, креатин, креатинин, индикан. Билирубин;
  • органические безазотистые: углеводы, липиды, глюкоза, лактат, холестерин, кетоны, пировиноградная кислота, минералы;
  • неорганические: катионы натрия, кальция, магния, калия, анионы хлора, йода.

Ионы, находящиеся в плазме, регулируют баланс pH, поддерживают в норме состояние клеток.

Функции белков

У белков есть несколько предназначений:

  • гомеостаз;
  • обеспечение стабильности иммунной системы;
  • поддержание агрегатного состояния крови;
  • перенос питательных веществ;
  • участие в процессе свертывания крови.

Функции плазмы

Плазма крови выполняет много функций, среди которых:


  • транспортировка кровяных клеток, питательных веществ, продуктов обмена веществ;
  • связывание жидких сред, находящихся вне кровеносной системы;
  • осуществление контакта с тканями организма через внесосудистые жидкости, тем самым осуществляя гемостаз.

Донорская плазма спасает много человеческих жизней

Применение донорской плазмы

Для переливания в наше время чаще нужна не цельная кровь, а ее компоненты и плазма. Поэтому в пунктах переливания нередко сдают кровь на плазму. Получают ее из цельной крови центрифугированием, то есть отделяют жидкую часть от форменных элементов с помощью аппарата, после чего клетки крови возвращают донору. Процедура продолжается около 40 минут. Отличие от сдачи цельной крови заключается в том, что кровопотеря значительно меньше, и сдать плазму вновь можно уже через две недели, но не более 12 раз в течение года.

Из плазмы получают сыворотку крови, которую используют в лечебных целях. Она отличается от плазмы тем, что в ней нет фибриногена, при этом содержатся все антитела, которые могут противостоять возбудителям болезней. Для ее получения помещают на час в термостат стерильную кровь. Затем отслаивают образовавшийся сгусток от стенки пробирки и держат в холодильнике сутки. После этого с помощью пастеровской пипетки отстоявшуюся сыворотку сливают в стерильную емкость.

Заключение

Плазма крови – это ее жидкая составляющая, имеющая очень сложный состав. Плазма выполняет в организме важные функции. Кроме того, донорская плазма используется для переливания и приготовления лечебной сыворотки, которую используют для профилактики, лечения инфекций, а также в диагностических целях для идентификации полученных во время анализа микроорганизмов. Она считается более эффективной, чем вакцины. Иммуноглобулины, содержащиеся в сыворотке, сразу же нейтрализуют вредные микроорганизмы и продукты их жизнедеятельности, быстрее формируется пассивный иммунитет.

Плазма крови: составные элементы (вещества, белки), функции в организме, использование

Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.



Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.

Состав плазмы крови

Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови, в которой нет коагулируемого белка фибриногена (фактора I), он ушел в сгусток. Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови, мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).

Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

плазма в общем составе крови

  • Белки, которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны альбумины (до 50% от всех белков или 40 – 50 г/л), глобулины (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, липопротеиды, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы — гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, липиды, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками (билирубин, мочевина, креатинин, мочевая кислота и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы (натрий, хлор, калий, магний, фосфор, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Таким образом, плазма — это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.



Вода – источник Н2О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень артериального давления (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство — изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

Видео: что такое плазма крови

Функции плазмы крови обеспечивают белки

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы , однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины — иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин — протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

белки плазмы крови

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Таблица 1. Основные белки плазмы крови

Альбумины

Альбумины — это простые белки, которые по сравнению с другими протеинами:

  • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
  • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
  • Не разрушаются при высушивании;
  • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков — участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:


  1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
  2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
  3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
  4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
  5. Перенос углеводов;
  6. Связывание и перенос свободных жирных кислот — ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
  7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
  8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
  9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
  10. Катализ иммунологических реакций (антиген→антитело);
  11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
  12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

Глобулины

Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

разнообразие форм видов белков плазмы

В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

Глобулины — весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:


  • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
  • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
  • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
  • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
  • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
  • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
  • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

Гамма-глобулины

Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

Таблица 2. Классы иммуноглобулинов и их характеристика

Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели — до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

IgM – 0,55 – 3,5 г/л;



IgA – 0,7 – 3,15 г/л;

Фибриноген

Первый фактор свертывания (FI — фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.



Белки плазмы в качестве лабораторных показателей

В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном материале по глобулинам.

Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).



Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию трансферрина (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe 3+ , как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

Исследование сыворотки с целью определения содержания церулоплазмина (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, С-реактивный белок).

Плазма крови – лечебное средство

Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.



Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении — здоровым, а его плазма должна иметь определенный титр антител (не менее 1 : 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

Видео: о сборе и использовании плазмы крови

Фракционирование белков плазмы в промышленных масштабах

Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.



Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

  • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
  • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный, либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин. В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
  • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
  • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

Жидкая часть крови человека — плазма

Одной из важнейших тканей организма является кровь, состоящая из жидкой части, форменных элементов и растворенных в ней веществ. Содержание плазмы в субстанции составляет порядка 60%. Жидкость используют для приготовления сывороток для профилактики и лечения разных заболеваний, идентификации полученных при анализе микроорганизмов, пр. Плазма крови считается более эффективной, чем вакцины и выполняет множество функций: белки и другие вещества в ее составе быстро нейтрализуют патогенные микроорганизмы и продукты их распада, помогая сформировать пассивный иммунитет.

Что такое плазма крови

Субстанция является водой с белками, растворенными солями и прочими органическими компонентами. Если посмотреть на нее под микроскопом, то вы увидите прозрачную (или немного мутную) жидкость с желтоватым оттенком. Она собирается в верхней части кровеносных сосудов после осаждения форменных частиц. Биологическая жидкость – это межклеточное вещество жидкой части крови. У здорового человека уровень белков поддерживается на одном уровне постоянно, а при заболевании органов, которые участвуют в синтезе и катаболизме, концентрация протеинов изменяется.

Обратите внимание!

— Грибок вас больше не побеспокоит! Елена Малышева рассказывает подробно.



— Елена Малышева- Как похудеть ничего не делая!

Как выглядит

Жидкая часть крови – это межклеточная часть кровотока, состоящая из воды, органических и минеральных веществ. Как выглядит плазма в крови? Она может иметь прозрачный цвет или желтый оттенок, что связано с попаданием в жидкость желчного пигмента или других органических компонентов. После приема жирной пищи жидкая основа крови становится слегка мутной и может незначительно менять консистенцию.

Состав

Основную часть биологической жидкости составляет вода (92%). Что входит в состав плазмы, кроме нее:

В состав плазмы крови человека входит несколько разных видов белков. Основными среди них являются:

  1. Фибриноген (глобулин). Отвечает за свертываемость крови, играет важную роль в процессе образования/растворения тромбов. Без фибриногена жидкая субстанция называется сывороткой. При повышении количества данного вещества развиваются сердечно-сосудистые заболевания.
  2. Альбумины. Составляет больше половины сухого остатка плазмы. Альбумины вырабатываются печенью и выполняют питательную, транспортную задачи. Сниженный уровень данного типа белка указывает на наличие патологии печени.
  3. Глобулины. Менее растворимые вещества, которые тоже продуцируются печенью. Функцию глобулинов – защитная. Кроме того, они регулируют свертываемость крови и осуществляют транспортировку веществ по организму человека. Альфа-глобулины, бета-глобулины, гамма-глобулины отвечают за доставку того или иного компонента. К примеру, первые осуществляют доставку витаминов, гормонов и микроэлементов, другие отвечают за активизацию иммунных процессов, переносят холестерин, железо, пр.

Функции плазмы крови

Белки выполняют сразу несколько важнейших функций в организме, одной из которых является питательная: кровяные клетки захватывают протеины и расщепляют их посредством особых ферментов, благодаря чему вещества лучше усваиваются. Биологическая субстанция контактирует с тканями органов через внесосудистые жидкости, тем самым поддерживая нормальную работу всех систем – гомеостаз. Все функции плазмы обусловлены действием белков:


  1. Транспортная. Перенос питательных веществ к тканям и органам осуществляется благодаря данной биологической жидкости. Каждый тип белка отвечает за транспортировку того или иного компонента. Важным также является перенос жирных кислот, лекарственных активных веществ, пр.
  2. Стабилизация осмотического кровяного давления. Жидкость поддерживает нормальный объем субстанций в клетках и тканях. Появление отеков объясняется нарушением состава белков, что влечет сбой оттока жидкости.
  3. Защитная функция. Свойства плазмы крови неоценимы: она поддерживает работу иммунной системы человека. Жидкость из плазмы крови включает в состав элементы, способные определять и ликвидировать чужеродные вещества. Данные компоненты активизируются при появлении очага воспаления и защищают ткани от разрушения.
  4. Свертывание крови. Это одна из ключевых задач плазмы: многие белки принимают участие в процессе сворачивания крови, предупреждая ее значительную потерю. Кроме того, жидкость регулирует противосвертывающую функцию крови, отвечает за предупреждение и растворение образующихся тромбов посредством контроля тромбоцитов. Нормальный уровень этих веществ улучшает регенерацию тканей.
  5. Нормализация кислотно-щелочного баланса. Благодаря плазме в организме поддерживает нормальный уровень рН.

Для чего вливают плазму крови

В медицине для переливаний чаще используют не цельную кровь, а ее конкретные компоненты и плазму. Получают ее путем центрифугирования, то есть отделения жидкость части от форменных элементов, после чего кровяные клетки возвращаются человеку, который согласился на донорство. Описанная процедура занимает около 40 минут, при этом ее отличие от стандартного переливания заключается в том, что донор переживает значительно меньшую кровопотерю, поэтому на его здоровье переливание практически не отражается.

Из биологической субстанции получают сыворотку, используемую в терапевтических целях. Данное вещество содержит все антитела, способные противостоять патогенным микроорганизмам, но освобождено от фибриногена. Для получения прозрачной жидкости в термостат помещают стерильную кровь, после образовавшийся сухой остаток отслаивают от стенок пробирки и держат в холоде на протяжении суток. После посредством пастеровской пипетки отстоянную сыворотку переливают в стерильный сосуд.

Анатомия Плазмы человека – информация:

Плазма —

Плазма крови (от греч. πλάσμα — нечто сформированное, образованное) — жидкая часть крови, в которой взвешены форменные элементы. Процентное содержание плазмы в крови составляет 52-60%. Макроскопически представляет собой однородную прозрачную или несколько мутную желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови. Плазма крови состоит из воды, в которой растворены вещества — белки (7-8% от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины — 4-5%, глобулины — 3% и фибриноген — 0,2-0,4%. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ, а также неорганические ионы.

Белки плазмы — альбумины, глобулины и фибриноген. К альбуминам относятся белки с относительно малой молекулярной массой (около), их 4-5%, к глобулинам — крупномолекулярные белки (молекулярная масса до) — количество их доходит до 3%. На долю глобулярного белка фибриногена (молекулярная масса) приходится 0,2-0,4%. С помощью метода электрофореза, основанного на различной скорости движения белков в электрическом поле, глобулины могут быть разделены на α1-, α2- и γ-глобулины.

Функции белков плазмы крови весьма разнообразны: — белки обеспечивают онкотическое давление крови, от которого в значительной степени зависит обмен воды и растворенных в ней веществ между кровью и тканевой жидкостью; — регулируют рН крови благодаря наличию буферных свойств; — влияют на вязкость крови и плазмы, что чрезвычайно важно для поддержания нормального уровня кровяного давления, обеспечивают гуморальный иммунитет, ибо явля¬ются антителами (иммуноглобулинами); — принимают участие в свертывании крови; — способствуют сохранению жидкого состояния крови, так как входят в состав противосвертывающих веществ, именуемых естественными антикоагулянтами; — служат переносчиками рада гормонов, липидов, минеральных веществ и др.; обеспечивают процессы репарации, роста и развития различных клеток организма. В среднем 1 литр плазмы человека содержитг воды,г белка и 20 г низкомолекулярных соединений.



Плотность плазмы составляет от 1,025 до 1,029, pH — 7,34-7,43. Существует обширная практика собирания донорской плазмы крови. Плазма отделяется от кровяных телец центрифугированием с помощью специального аппарата, после чего эритроциты возвращаются донору. Этот процесс называется плазмаферезом. Плазма с высокой концентрацией тромбоцитов (богатая тромбоцитами плазма, БоТП) находит все большее применение в медицине в качестве стимулятора заживления и регенерации тканей организма.

Растворы, имеющие одинаковое с кровью осмотическое давление, получили название изотонических, или физиологических. К таким растворам для теплокровных животных и человека относится 0,9% раствор натрия хлорида и 5% раствор глюкозы.

Растворы, имеющие большее осмотическое давление, чем кровь называются гипертоническими, а меньшее — гипотоническими. Для обеспечения жизнедеятельности изолированных органов и тканей, а также при кровопотере используют растворы, близкие по ионному составу к плазме крови. Из-за отсутствия коллоидов (белков) растворы Рингера-Локка и Тироде неспособны на длительное время задерживать воду в крови — вода быстро выводится почками и переходит в ткани. Поэтому в клинической практике эти растворы применяются в качестве кровезамещающих лишь в случаях, когда отсутствуют коллоидные растворы, способные на длительное время восполнить недостаток жидкости в сосудистом русле.

Плазма крови

Пла́зма кро́ви (от греч. πλάσμα  — нечто сформированное, образованное) — жидкая часть крови, в которой взвешены форменные элементы — вторая часть крови. Процентное содержание плазмы в крови составляет 52—61 %. Макроскопически представляет собой однородную несколько мутную (иногда почти прозрачную) желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.

Центрифуги-сепараторы разделяют кровь на эритромассу и плазму. Плазма крови состоит из воды, в которой растворены вещества — белки (7—8 % от массы плазмы) и другие органические и минеральные соединения. Основными белками плазмы являются альбумины — 4—5 %, глобулины — 3 % и фибриноген — 0,2—0,4 %. В плазме крови растворены также питательные вещества (в частности, глюкоза и липиды), гормоны, витамины, ферменты и промежуточные и конечные продукты обмена веществ, а также неорганические ионы.



В среднем 1 литр плазмы человека содержит 900—910 г воды, 65—85 г белка и 20 г низкомолекулярных соединений. Плотность плазмы составляет от 1,025 до 1,029, pH — 7,34—7,43.

Существует обширная практика собирания донорской плазмы крови. Плазма отделяется от эритроцитов центрифугированием с помощью специального аппарата, после чего эритроциты возвращаются донору.

Плазма с высокой концентрацией тромбоцитов (богатая тромбоцитами плазма, БоТП) находит все большее применение в медицине в качестве стимулятора заживления и регенерации тканей организма. В настоящее время на основе БоТП российскими врачами разработана многофункциональная медицинская методика плазмолифтинг, используемая в стоматологии и косметологии.

Что такое плазма крови

Кровь образована соединением группы веществ — плазмы и форменных элементов. Каждая часть имеет ярко выраженные функции и исполняет свои уникальные задачи. Определенные ферменты крови делают ее красной, однако в процентном соотношении большую часть состава (50-60%) занимает жидкость светло-желтого цвета. Такое соотношение плазмы называется гематокринное. Плазма придает крови состояние жидкости, хотя по плотности тяжелее воды. Плотной плазму делают содержащиеся в ней вещества: жиры, углеводы, антитела в крови, соли и прочие составляющие. Плазма крови человека может приобрести мутный оттенок после приема жирной пищи. И так, что такое плазма крови и какие ее функции в организме, обо всем этом узнаем далее.

Компоненты и состав

Более 90% в составе плазмы крови занимает вода, остальные её составляющие — сухие вещества: белки, глюкоза, аминокислоты, жир, гормоны, растворенные минералы.



Порядка 8% состава плазмы приходится на белки. Белки в крови в свою очередь состоят из фракции альбуминов (5%), фракции глобулинов(4%), фибриногенов (0,4%). Таким образом, в 1 литре плазмы содержится 900 гр воды, 70 гр белка и 20 гр молекулярных соединений.

Плазма крови в пробирке

Наиболее распространен белок — альбумин в крови. Он образуется в печение и занимает 50% протеиновой группы. Основными функциями альбумина являются транспортная (перенос микроэлементов и препаратов), участие в обмене веществ, синтез белков, резервирование аминокислот. Наличие альбумина в крови отражает состояние печени — пониженный показатель альбумина свидетельствует о присутствии заболевания. Низкое же содержание альбумина у детей, например, увеличивает шанс на заболевание желтухой.

Глобулины— крупномолекулярные составляющие белка. Они вырабатываются печенью и органами иммунной системы. Глобулины могут быть трех видов: бета-, гамма-, альфа-глобулины. Все они обеспечивают транспортные и связующие функции. Гамма-глобулины еще именуют антителами, они отвечают за реакцию иммунной системы. При снижении иммуноглобулинов в организме наблюдается значительное ухудшение в работе иммунитета: возникают постоянные бактериальные и вирусные инфекции.

Белок фибриноген формируется в печени и, становясь фибрином, он образует сгусток в местах поражения сосудов. Таким образом жидкая составляющая крови участвует в процессе ее свертываемости.


Среди небелковых соединений присутствуют:
  • Органические азотосодержащие соединения (азот мочевины, билирубин, мочевая кислота, креатин и пр.). Повышение азота в организме называется азотомия. Она возникает при нарушении выведения продуктов обмена с мочой или же при избыточном поступлении азотистых веществ в силу активного распада белков (голодание, сахарный диабет, ожоги, инфекции).
  • Органические безазотистые соединения (липиды, глюкоза, холестерин в крови, молочная кислота). Для поддержания здоровья необходимо отслеживать ряд этих жизненно-важных показателей.
  • Неорганические элементы (кальций, соль натрия, магний и пр.). Минеральные вещества также являются важнейшими компонентами системы.

Ионы плазмы (натрий и хлор) поддерживают щелочной уровень крови (ph), обеспечивающий нормальное состояние клетки. Они также выполняют роль поддержки осмотического давления. Ионы кальция участвуют в реакциях мышечных сокращений и влияют на чувствительность нервных клеток.

В процессе жизнедеятельности организма, в кровь поступают продукты обмена, биологически активные элементы, гормоны, питательные вещества и витамины. При этом состав крови конкретно не меняется. Регуляторные механизмы обеспечивают одно из важнейших свойств плазмы крови — постоянство её состава.

Функции плазмы

Основная задача и функции плазмы состоит в перемещении кровяных клеток и питательных элементов. Она также выполняет связку жидких сред в организме, которые выходят за пределы кровеносной системы, поскольку имеет свойство проникать через сосуды человека.

Важнейшей функцией плазмы крови является проведение гемостаза (обеспечение работы системы при которой жидкость способна останавливаться при разных видах кровотечениях и удалять последующий тромб, участвующий в свертываемости). Задача плазмы в крови также сводится к поддержанию стабильного давления в организме.

Применение в донорстве

В каких ситуациях и для чего нужна плазма крови донора? Переливают плазму чаще всего не целиком кровь, а только её компоненты и плазменную жидкость. Производя забор крови, с помощью специальных средств разделяют жидкость и форменные элементы, последние, как правило, возвращаются пациенту. При таком виде донорства, частота сдачи возрастает до двух раз в месяц, но не более 12 раз в год.

Переливание донорской плазмы

Из плазмы крови также делают кровяную сыворотку: из состава удаляется фибриноген. При этом сыворотка из плазмы остается насыщена всеми антителами, которые будут противостоять микробам.

Болезни крови, влияющие на плазму

Заболевания человека, которые влияют на состав и характеристику плазмы в крови являются крайне опасными.

Выделяют перечень болезней:

  • Сепсис крови — возникает, когда инфекция попадает непосредственно в кровеносную систему.
  • Гемофилия у детей и взрослых — генетический дефицит белка, отвечающий за свертываемость.
  • Гиперкоагулянтное состояние — слишком быстрая свертываемость. В таком случае вязкость крови увеличивается и пациентам назначают препараты для ее разжижения.
  • Глубокий тромбоз вен — формирование тромбов в глубоких венах.
  • ДВС-синдром — одновременное возникновение тромбов и кровотечений.

Все заболевания связаны с особенностями функционирования кровеносной системы. Воздействие на отдельные компоненты в структуре плазмы крови способно обратно привести в норму жизнеспособность организма.

Плазма — есть жидкая составляющая крови со сложным составом. Она сама выполняет ряд функций, без которых жизнедеятельность организма человека была бы невозможной.

В медицинских целях, плазма в составе крови чаще эффективнее, чем вакцина, поскольку составляющие её иммуноглобулины реактивно уничтожают микроорганизмы.

Из чего состоит плазма крови и для чего она нужна в медицине

Кровь человека представлена 2 составляющими: жидкой основой или плазмой и клеточными элементами. Что такое плазма и каков ее состав? Какое функциональное предназначение имеет плазма? Разберем все по порядку.

Все о плазме

Плазма – это жидкость, образованная водой и сухими веществами. Она составляет основную часть крови – около 60 %. Благодаря плазме кровь имеет состояние жидкости. Хотя по физическим показателям (по плотности) плазма тяжелее воды.

Макроскопически плазма представляет собой прозрачную (иногда мутную) однородную жидкость светло-желтого цвета. Она собирается в верхнем участке сосудов, когда форменные элементы оседают. Гистологический анализ показывает, что плазма – межклеточное вещество жидкой части крови.

Мутной плазма становится после употребления человеком жирных продуктов.

Из чего состоит плазма?

Состав плазмы представлен:

Содержание воды в плазме — около 90 %. К солям и органическим соединениям относят:

Какой процент от объема плазмы составляет белок?

Это самый многочисленный компонент плазмы, он занимает 8 % всей плазмы. Плазма содержит белок различных фракций.

Состав и задачи небелковых соединений в плазме

  • Органические соединения, основу которых составляет азот. Представители: мочевая кислота, билирубин, креатин. Повышение количества азота сигнализирует о развитии азотомии. Это состояние возникает из-за проблем с выведением мочой продуктов обмена либо из-за активного разрушения белка и поступления большого количества азотистых веществ в организм. Последний случай характерен для сахарного диабета, голодания, ожогов.
  • Органические соединения, не содержащие азот. Сюда входит холестерин, глюкоза, молочная кислота. Компанию им составляют еще липиды. Все эти компоненты должны отслеживаться, так как они необходимы для поддержания полноценной жизнедеятельности.
  • Неорганические вещества (Ca, Mg). Ионы Na и Cl отвечают за поддержания постоянного Ph крови. Они также следят за осмотическим давлением. Ионы Ca принимают участие в сокращении мышц и стимулируют чувствительность нервных клеток.

Cостав плазмы крови к содержанию ↑

Альбумин

Альбумин в плазменной крови – основной компонент (более 50% ). Он отличается небольшой молекулярной массой. Местом образования данного белка является печень.

  • Переносит жирные кислоты, билирубин, лекарственные средства, гормоны.
  • Берет участие в обмене веществ и образовании белка.
  • Резервирует аминокислоты.
  • Формирует онкотическое давление.

По количеству альбумина медики судят о состоянии печени. Если содержание альбумина в плазме снижено, то это указывает на развитие патологии. Низкое содержание этого белка плазмы у детей увеличивает риск заболеть желтухой.

Глобулины

Глобулины представлены крупными молекулярными соединениями. Они вырабатываются печенью, селезенкой, тимусом.

Выделяют несколько видов глобулинов:

  • α – глобулины. Они взаимодействуют с тироксином и билирубином, связывая их. Катализируют образование белков. Отвечают за транспортировку гормонов, витаминов, липидов.
  • β – глобулины. Эти белки связывают витамины, Fe, холестерол. Переносят катионы Fe, Zn, стероидные гормоны, стерины, фосфолипиды.
  • γ – глобулины. Антитела или иммуноглобулины связывают гистамин и принимают участие в защитных иммунных реакциях. Они производятся печенью, лимфатической тканью, костным мозгом и селезенкой.

Насчитывают 5 классов γ – глобулинов:

  • IgG (около 80% всех антител). Для него характерна высокая авидность (соотношение антитела к антигену). Может проникать через плацентарный барьер.
  • IgM – первый иммуноглобулин, который образуется у будущего малыша. Белок отличается высокой авидностью. Он первый обнаруживается в крови после вакцинации.
  • IgA.
  • IgD.
  • IgE.

Фибриноген – растворимый белок плазмы. Он синтезируется печенью. Под влиянием тромбина белок преобразуется в фибрин – нерастворимую форму фибриногена. Благодаря фибрину в местах, где целостность сосудов была нарушена, образуется сгусток крови.

Остальные белки и функции

Незначительные фракции белков плазмы после глобулинов и альбуминов:

  • Протромбин;
  • Трансферрин;
  • Иммунные белки;
  • С-реактивный белок;
  • Тироксинсвязывающий глобулин;
  • Гаптоглобин.

Задачи этих и других белков плазмы сводятся к:

  • Поддержанию гомеостаза и агрегатного состояния крови;
  • Контролю за иммунными реакциями;
  • Транспортировке питательных веществ;
  • Активации процесса свертывания крови.

к содержанию ↑

Функции и задачи плазмы

Для чего нужна плазма человеческому организму?

Ее функции разнообразны, но в основном они сводятся к 3 главным:

  • Транспортирование кровяных телец, питательных веществ.
  • Осуществление связи между всеми жидкими средами организма, которые располагаются вне кровеносной системы. Эта функция возможна, за счет способности плазмы проникать сквозь сосудистые стенки.
  • Обеспечение гемостаза. Подразумевается контроль над жидкостью, которая останавливается во время кровотечений и удалять образовавшийся тромб.

к содержанию ↑

Применение плазмы в донорстве

Сегодня кровь в цельном виде не переливают: для терапевтических целей отдельно выделяют плазму и форменные компоненты. В пунктах сдачи крови чаще всего сдают кровь именно на плазму.

Как получить плазму?

Получение плазмы из крови происходит с помощью центрифугирования. Метод позволяет отделить плазму от клеточных элементов с помощью специального аппарата, не повреждая их. Кровяные тельца возвращаются донору.

Процедура по сдаче плазмы имеет ряд преимуществ перед простой сдачей крови:

  • Объем кровопотери меньше, а значит, вреда здоровью наносится тоже меньше.
  • Кровь на плазму можно сдать вновь уже через 2 недели.

Существуют ограничения по сдаче плазмы. Так, донор может сдать плазму не более 12 раз за год.

Сдача плазмы занимает не больше 40 минут.

Плазма является источником такого важного материала, как сыворотка крови. Сыворотка – это та же плазма, но без фибриногена, однако с тем же набором антител. Именно они борются с возбудителями различных заболеваний. Иммуноглобулины способствуют скорейшему развитию пассивного иммунитета.

Чтобы получить сыворотку крови, стерильную кровь помещают в термостат на 1 час. Далее полученный сгусток крови отслаивают от стенок пробирки и определяют в холодильник на 24 часа. Полученную жидкость при помощи пастеровской пипетки добавляют в стерильный сосуд.

Патологии крови, влияющие на характер плазмы

В медицине выделяют несколько заболеваний, которые способны влиять на состав плазмы. Все они представляют угрозу для здоровья и жизни человека.

Основными из них являются:

  • Гемофилия. Это наследственная патология, когда наблюдается недостаток белка, который отвечает за свертываемость.
  • Заражение крови или сепсис. Явление, возникающее из-за попадания инфекции непосредственно в кровеносное русло.
  • ДВС-синдром. Патологическое состояние, причиной которого является шок, сепсис, тяжелые повреждения. Характеризуется нарушениями свертывания крови, которые приводят одновременно к кровотечению и образованию тромбов в мелких сосудах.
  • Глубокий венозный тромбоз. При заболевании наблюдается формирование тромбов в глубоких венах (преимущественно на нижних конечностях).
  • Гиперкоагуляция. У пациентов диагностируется чрезмерно высокая свертываемость крови. Вязкость последней увеличивается.

Плазмотест или реакция Вассермана – это исследование, выявляющее наличие антител в плазме к бледной трепонеме. По этой реакции вычисляется сифилис, а также эффективность его лечения.

Плазма – жидкость, имеющая сложный состав, играет важную роль в жизни человека. Она отвечает за иммунитет, свертываемость крови, гомеостаз.