Группы крови обозначение в генетике

Виды крови по группам



Расовая принадлежность, крови группа, цвет волос и роговицы глаза – это все признаки, которые отличают нас друг от друга. Многие из них у любого здорового человека остаются неизменными в течение всей жизни.

Оглавление:

Что такое группа крови

Кровь является активно-подвижной внутренней средой организма, которая выполняет огромное количество важнейших для жизнедеятельности функций. Она отличается относительным (у здорового организма) постоянством состава и включает в себя плазму и находящиеся в ней форменные взвешенные элементы: эритроциты (или красные тельца), лейкоциты и тромбоциты.

Иммуногенетические признаки физиологического состава крови, позволяющие классифицировать людей в определенные ряды по сходству антигенов (чужеродных веществ, провоцирующих образование антител), находящихся в плазме и взвешенных частицах, – это и есть группа крови. Наличие у человека того или иного антигена, а также их всевозможные сочетания создают тысячи вариантов генных структур.

Группа крови – это исключительно наследственный признак, она не зависит ни от расы, ни от возраста, ни от пола. Она начинает формироваться еще на ранних сроках внутриутробного развития плода.

Сколько групп и чем они отличаются

Антигены распределены по группам, которые имеют свое значение и название. Самые распространенные из них, использующиеся повсеместно, – системы групп крови AB0 и Rh (резус). Помимо них, существуют другие, но они менее известны и реже используются в медицине, например такие как Келл, Даффи, MNSs.



Система групп крови AB0 была открыта на рубеже XX века К. Ландштейнером, который, смешивая сыворотку одних людей с клетками (эритроцитами) других, заметил, что реакции отличаются: кровь либо сворачивалась, образуя хлопья, либо нет. На основании исследования было выявлено четыре группы. Каждая из них обозначается символом A, B или 0.

  1. Первая (0). Ее обладатели – практически 50% всего населения земли (особенно распространена первая положительная группа). Отличается она тем, что в ней полностью отсутствуют инородные частицы (антитела), то есть она не вступает в реакцию с другими группами. Люди с первой группой являются универсальными донорами: их физиологическую жидкость (кровь) можно переливать человеку с любой другой группой.
  2. Вторая (A). Она вступает в реакцию с антителами группы B, поэтому ее можно переливать только тем людям, у которых они отсутствуют – с I и II группой.
  3. Третья (B). Эта группа, наоборот, неустойчива к A-антителам, поэтому принять ее от донора могут только люди с I и III группами.
  4. Четвертая (AB0). Особенность в том, что эта группа крови содержит антигены A и B, но при этом в ней нет антител. Интересно, что принять четвертую группу могут только обладатели идентичной группы, в то время как им самим можно принимать любую группу – они универсальные реципиенты. Это обусловлено отсутствием антител и неспособностью склеиваться с поступившими извне антителами. Она является относительно новой группой крови, так как была выявлена позже остальных.

Посредством системы группы крови Rh определяют резус-фактор. То есть наличие определенного белка (антигена) на поверхности кровяных красных телец. Разновидности крови Rh может быть:

  1. Положительным, то есть данный антиген присутствует. Его имеют 85% населения.
  2. Отрицательным, то есть антигена нет. Его обладатели – 15% людей. Обычно никаких неудобств это не приносит. Особое внимание уделяется только резус-отрицательным женщинам.

Для обозначения резуса используют простые знаки + и -.

Этот фактор напрямую зависит от наследственности. Так, к примеру, если один из родителей обладатель первой группы крови, то, независимо от второго родителя, у пары не может родиться малыш с IV группой. Подробнее разные вариации описывает таблица, которая представлена ниже.

Самым редким фенотипом крови является сочетание редкой группы и резуса, то есть четвертая отрицательная.



Таблица вероятности группы крови ребенка (обозначение групп крови производится римскими цифрами I – IV)

Как узнать свою группу крови и резус

Стандартное (простое) определение для группы крови не требует особой подготовки. Для проведения исследования понадобятся сыворотки, содержащие антигены, и капля крови испытуемого.

Сыворотки изготавливаются только на Станциях переливания из донорского сырья. Они обязательно имеют сроки годности и особые условия хранения. На упаковке указываются номер и серия партии. Для более верного анализа берется два разных набора сывороток.

На плоскую тарелку наносят по крупной капле каждой сыворотки (достаточно II и III, но для контроля берут I и IV тоже), затем аккуратно вносят в них кровь в соотношении 1:10. В течение 5 минут тарелку легко покачивают, давая возможность жидкостям смешаться. Результаты определяются так:

  • если кровь не свернулась ни в одной из проб – это первая группа;
  • если процесс произошел во всех пробах, кроме II, то это вторая;
  • если во всех, кроме III, то, соответственно, третья группа;
  • если свертываемость отмечается абсолютно везде – это четвертая.

Если реакция нечеткая, то анализ делают повторно.



Для определения резус-фактора требуется лабораторное исследование. Обычно анализ готов в течение суток. Существует несколько основных показаний для проведения такой процедуры:

  • беременность;
  • подготовка к операции;
  • необходимость определения совместимости при переливании;
  • несовместимость крови ребенка и матери (гемолитическая болезнь новорожденного).

Резус-фактор и беременность

Еще на этапе планирования родители должны позаботиться о спокойном течении беременности и с ответственностью отнестись к здоровью будущего младенца.

Одним из пунктов подготовки к зачатию является обязательный анализ на совместимость отца и матери.

Для исследования берут кровь из вены, а результат включает группы и резусы обоих родителей и возможность вынашивания здорового малыша. Чем раньше будут сданы анализы, тем лучше для всей семьи.

Главное для ребенка – это совместимость по резус-фактору. Если у матери положительный резус, то проблемы возникают крайне редко, так как в большинстве случаев кроха наследует кровь женщины. Если же у будущей мамочки резус-фактор отрицательный, то к течению беременности нужно отнестись с максимальной ответственностью: рано встать на учет в гинекологию или консультацию, вовремя сдавать положенные анализы и планово посещать специалиста. В этом случае есть вероятность развития резус-конфликта, особенно если папа имеет положительный вариант.



Резус-конфликт может появиться при несовместимости показателей родителей. Так, антитела, которые вырабатывает женский организм, будут стремиться уничтожить младенца в утробе, а точнее, антигены, которые переносят его эритроциты. По статистике у 50% новорожденных бывает положительная кровь, но во время родов некоторая часть крови ребенка попадает к матери, и ее организм вырабатывает антитела к непохожему резусу. Так уж устроен организм. Опасными могут стать вторые роды, так как, накапливаясь, эти антитела могут серьезно навредить малышу, искореняя его клетки крови.

К счастью, сейчас врачи могут благополучно предотвращать резус-конфликты. После первых родов в организм женщины вводятся антитела, которые полностью уничтожают положительные клетки ребенка, попавшие в ее организм. После процедуры вторая беременность пройдет без наличия проблемы, и малыш родится крепким.

Каждый должен знать свою группу крови и резус-фактор, так как эта информация может оказаться полезной и даже спасти жизнь себе и другому человеку в экстренной ситуации.

Какую группу крови наследует ребенок

Что такое группа крови? Неизменна ли она?

Группы крови – это естественные иммуногенетические признаки крови млекопитающих и людей. Которые различаются между собой особенностями сочетаний групповых изоантигенов (агглютиногенов) в красных кровяных тельцах крови (эритроцитах) и соответствующих им антител в плазме. Группа крови – наследственный признак, он начинает формироваться с самого начала развития эмбриона и остаётся постоянным на протяжении всей жизни человека.



Однако медицинская практика знает исключения из этого правила. Изменение группы крови возможно при тяжелых формах рака крови, пересадке костного мозга, многократных переливаниях крови в сочетании с операциями на костном или головном мозге.

Классификация групп крови и их обозначение

Эритроциты (красные кровяные тельца) каждого человека содержат большое количество антигенов, которые на клеточном и молекулярном уровне образуют не связанные друг с другом групповые системы. Каждая из систем состоит из пары или нескольких пар антигенов.

Мировая практика медицинских лабораторий насчитывает более 29 групповых систем крови. Наиболее часто используются: АВ0, Келл, Даффи, Кид, резус-фактор, MNSs.

В России и странах СНГ используется система АВ0.

Групповая система АВ0, как постоянный признак, выделяет наличие в эритроцитах изоантигенов и наличие в плазме крови нормальных групповых антител (агглютининов).

Система АВ0 включает:

  • 2 изоантигена, обозначающихся “A” и “B”
  • 2 агглютинина, обозначающихся α и β

Соотношение А к анти-А (α) и В к анти-В (β) образуют четыре группы крови.

Первая группа крови обозначается: 0 (I)

Вторая группа обозначается: А (II)

Третья группа обозначается: В (III)

Четвёртая группа обозначается: АВ (IV)



Определение групповой принадлежности очень важно в хирургической практике при переливании цельной крови или её компонентов. В акушерстве и гинекологии при планировании беременности и наблюдении беременных.

Резус-фактор или система Rh

Резусом крови называется специфический белок (антиген), который располагается на поверхности клеток эритроцитов.

Люди, эритроциты которых содержат резус, являются резус-положительными.

Люди, эритроциты которых резус не содержат, являются резус-отрицательными.

Резус система крови очень сложна, она содержит более 40 антигенов, которые обозначаются разными символами и буквами. Наиболее часто у людей встречаются резус-антигены типов: D, C, E, e.



Закономерность наследования группы крови и резус фактора

Установлено, что наследование этих признаков не связано друг с другом.

Как наследуется резус-фактор

Если папа и мама имеют резус-фактор положительный, скорее всего, ребёнок его унаследует. Однако существует возможность наследования через неопределённое количество поколений, то есть у пары с положительным резус-фактором возможно рождение ребенка с резус-фактором отрицательным. У пары с отрицательным резус-фактором может родиться малыш с резус-фактором положительным. Если резус-факторы у родителей разные, вероятность положительной резус-принадлежности ребёнка 75%, отрицательной — 25%.

Как наследуется группа крови

Генетический закон гласит: ребёнок наследует от родителей не одну из их групп крови, а набор генов, который её определяет.

Согласно системе АВ0, в эритроцитах потенциально возможно соединение трёх факторов: А, В и 0. Но передать по наследству возможно только два гена, например, два А или два В, А0, В0 или АВ.

Закон наследования Георга Менделя, основоположника генетики видов, определяет гены А и В как доминантные (преобладающие), а ген 0 как рецессивный (угнетаемый, подавляемый).



Первая группа крови может наследоваться ребёнком при соединении двух рецессивных генов “00”.

Вторая группа крови может быть унаследована ребёнком при сочетании родительских генов “AA” и “A0”.

Третья группа крови наследуется ребенком при слиянии сочетания генов “ВВ” и “В0”.

А вот соединение, так сказать, равноправных генов А и В приводит к наследованию редкой четвёртой группы крови.

Как видно из этого закона генетики у ребёнка может образоваться группа крови, которой нет ни у кого из родителей.



Таким образом, какую группу крови наследует ребенок можно предположить из приведенной таблицы.

Какие обозначения имеют различные группы крови и резус-фактор в анализах, значение данных показателей

Система АВ0 представляет собой классификацию, основанную на наличии или отсутствии особых веществ, располагающихся на поверхности красных клеток. В их качестве рассматриваются полипептиды, сахариды, гликопротеины или гликолипиды, в зависимости от системы группы крови. Некоторые из этих антигенов присутствуют и на мембране других типов клеток различных тканей.

Что такое система АВ0?

Все эпитопы или фенотипы, возникающие в результате действия различных аллелей одного и того же гена или близкородственных генов, относятся к одной и той же системе групп крови. Кровь представляет собой жидкую ткань, которую легко можно переливать от одного человека в другого.

Несмотря на идентичный клеточный состав этой ткани, существует изменчивость или полиморфизм различных элементов, что делает невозможным переливание между определенными группами людей.

Лица с одинаковой характеристикой, как говорят, принадлежат к одной группе крови. Эти характеристики демонстрируются методами гемагглютинации с использованием антител и лектинов. В случае проблем могут использоваться методы молекулярной биологии.

Открытие системы AB0, первой из классификаций, Карлом Ландштайнером в 1900 году, позволило понять, почему некоторые переливания крови были успешными, а другие закончились трагически. Именно он определил то, как сегодня обозначаются группы крови и резус. Антигены – это молекулы, которые покрывают поверхность всех клеток организма и способствуют его идентичности. Они становятся мишенями для антител, когда они идентифицируются как чужеродные.



Антитела представляют собой молекулы, синтезируемые В-клетками иммунной системы, которые реагируют с антигенами, не принадлежащим телу. Они атакуют чужеродные организмы. Некоторые антитела изготавливаются «по требованию» (защита от бактерий и паразитов), другие существуют естественным образом в организме (который был обнаружен с помощью системы AB0).

Когда антитело (или лектин) специфически связывается с антигеном на поверхности эритроцитов, оно вызывает агглютинацию, иногда гемолиз (разрушение) последнего. Агглютинация может быть либо скоротечной, либо проявляться без ярких симптомов. В первом случае пострадавшим нужна неотложная медицинская помощь.

Открытие групп крови связано с овладением практикой ее переливания. Первые такие процедуры, часто со смертельным исходом для пациента, были выполнены до начала XIX-го века на Западе. Хотя Папа Иннокентий VIII умер в 1492 году, Жан Батист Дени совершил при Людовике XIV самое старое известное и успешное переливание 15 июня 1667 года. Практика переливания без надлежащих знаний была чрезмерно опасной, так что парламент Парижа запретил практику в 1668 году, несмотря на впечатляющие успехи.

В 1900 году австрийский врач и биолог Карл Ландштайнер показал, что смешивание крови разных людей способно привести к агглютинации. Он обнаружил два типа веществ: агглютиногены на эритроцитах и агглютинины в сыворотке.

В 1901 году Карл Ландштайнер обнаружил группы A, B и 0, в то время как Альфред фон Декастелло и Адриано Стурли обнаружили AB в 1902 году. Переливание стало нормальной практикой после 1911 года, когда американский ученый Рубен Оттенберг показал, что нужно учитывать группы изоагглютинации.



Карл Ландштайнер в сотрудничестве с Филиппом Левином обнаруживает группы M, N и P в 1925 году. В 1930 году Ландштайнер получил Нобелевскую премию по физиологии и медицине за свою работу. Ландштайнер, Алекс Винер, Левин и Стейтсон обнаружили резус-фактор между 1939 и 1940 годами. Эти две системы остаются наиболее важными и в медицинской практике, и в их историческом отношении, поскольку обеспечивают генетическую и иммунологическую основу для всех последующих исследований других систем.

Как используется система АВ0 в медицине?

Система AB0, обнаруженная в 1900 году Лайндштейнером, классифицирует различные группы крови в зависимости от присутствия или отсутствия антигенов A или B на поверхности эритроцитов. Красные кровяные клетки варьируются в зависимости от наличия антигенов:

  • Группа А – антиген А;
  • Группа В – агглютиноген В;
  • Группа АВ – антигены А и В;
  • Группа О – без антигенов.

Использование в медицине знаний о системе АВ0 позволило снизить риск возникновения тяжелых гемолитических осложнений. Кровотечения различного генеза с обильными кровопотерями начали купировать переливанием красных клеток от донора к реципиенту без последствий.

Молодые матери с резус-отрицательным статусом и резус-положительным ребенком в утробе с меньшей вероятностью могут потерять его. Частота появления гемолитической болезни плода тоже в значительной степени снизилась из-за введения иммуноглобулинов. Уменьшилось и количество смертей, связанных с потерей крови.

Что такое резус-фактор?

Система резуса – это пептидные соединения, которые объяснили проблемы, вызванные переливанием крови. Она позволяет классифицировать группы крови в зависимости от наличия или отсутствия антигена D на поверхности эритроцитов (резус — это название макаки, Macaca rhesus, в честь которой был назван данный фактор).

В общей медицинской практике выделяют людей, у которых нет антигена D на поверхности эритроцитов. Субъекты rh- не имеют анти-D-антител в своей плазме, поэтому трансфузия их крови резус-положительным людям возможна без последствий. Проблемы возникают, когда реципиенту с резус-отрицательной кровью переливается резус-положительная. Начинается необратимый процесс агглютинации (слипания красных кровяных клеток).



В данной системе групп крови выделяется множество других антигенов рядом с веществом D: агглютиногены C (RH2), E (RH3), c (RH4) и e (RH5). Некоторые из этих антигенов могут приводить к тем же осложнениям, что и антиген D, в частности антиген С (RH4), который содержится в крови резус-отрицательных людей.

Какое обозначение группы крови и резус-фактора ставят в анализах?

Обозначение группы крови и резус-фактора производят следующим образом: сначала ставят номер группы, а потом Rh-фактор. Например, B(III)+ означает, что у человека третья группа крови и положительный резус. Ответом на то, как обозначается вторая положительная группа крови, будет A(II)+. Нулевая группа (первая) обозначается как 0 (I), а четвертая как AB (IV).

Внимание! Многие задаются вопросом, а как обозначается группа с отрицательным резус-фактором крови? После номера обычно ставят знак «минус». Выглядит это так: II-. От вида крови зависит последующее переливание.

3 резус-положительная группа крови обозначается так же, как и другие (римскими цифрами) – III. Никаких отличий в том, как обозначается вторая группа крови, нет.

Что такое совместимость крови?

Совместимость между группой крови донора и реципиентом оценивается перед переливанием крови или трансплантацией органов. Переливание не будет успешным, если антитела сталкиваются с клетками с соответствующими антигенами.



Иммунологическая реакция (агглютинация и гемолиз) происходит чрезвычайно быстро и вызывает серьезные осложнения. Последствия варьируются от неэффективной трансфузии без клинических признаков до легкой (тошнота, дрожь), тяжелой (шока, гемоглобинурии, почечной недостаточности) или фатальной реакции (шок, диссеминированная внутрисосудистая коагуляция), приводящей к смерти.

Такое состояние нередко возникает при беременности у женщин с резус-отрицательными показателями, несущих резус-положительный плод. Если это первая беременность, она обычно проходит без последствий, если мать ранее не была иммунизирована антигеном D.

В противном случае, поскольку антитела иногда могут пересекать плацентарный барьер, эритроциты плода подвергаются разрушению. Заболевание носит название «гемолитическая болезнь плода» или ГБП.

Доброкачественная ГБП вызывает только желтуху и переходную анемию. Эти последние случаи стали очень редкими, поскольку практикуется предотвращение иммунизации женщин инъекцией анти-D-антитела на двадцать восьмой неделе беременности (с 2005 года), а затем в роддоме при родах Rh-позитивного ребенка. Также ГБП вызывает наличие Rh-4 фактора у плода.

В системе AB0 антитела, специфичные к антигенам, которых они нет на собственных кровяных клетках, обнаруживаются в крови всех людей. Таким образом, человек с группой В естественным образом создает антитела против А, а с группой 0 – против А и В.


Эти антитела считаются регулярными, потому что они присутствуют у всех людей, кроме новорожденных. Анти-А антитела, например, связываются с молекулами А на клетках. Эти естественные антитела появляются в системе AB0 с первых месяцев жизни.

В системе резус естественных антител нет. Они появляются только после первоначальной сенсибилизации: при беременности или переливании (некоторые анти-E или анти-C вещества могут, однако, быть «естественными»). Стоит заметить, что иммуноглобулины класса IgG, активны при температуре 37 °C. Только при определенных условиях они вызывают агглютинацию.

Совет! При появлении различных симптомов гемолитической анемии нужно незамедлительно обратиться к лечащему врачу. Иногда медицинская ошибка при переливании крови заканчивается летальным исходом. Главная задача врача – исключить такую возможность.

Как возникли различия в эритроцитах в процессе эволюции?

Образование различных групп (система AB0) дает лишь несколько надежных показаний. Согласно исследованиям молекулярной биологии, группа 0 возникла приблизительно 5 миллионов лет назад в результате генетической мутации из группы крови A.

Было обнаружено, что носители группы 0 имеют лучшую выживаемость в случае инфекции малярии (Plasmodium falciparum). Это преимущество выбора послужило тому, что во влажных тропических зонах Африки и на американском континенте данный тип встречается чаще, чем в других регионах мира.

В случае приматов она развивалась независимо не менее шести раз. Полиморфизм происходит и у людей, и у обезьян. Другие факторы, которые влияли на развитие и распространение различных групп, по-прежнему в значительной степени неясны.



Частоты генов аллелей групп крови, рассчитанные по закону Замка-Харди-Айсберга, позволили генетикам разработать популяционную генетику. Благодаря этому стало возможным следить за миграциями и фильтрациями различных популяций в странах земного шара.

Задачи на определение групп крови и резус-фактора

Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу biorepet-ufa.ru.

Сегодня мы наконец то добрались до решения задач по генетике на определение групп крови у человека по системе О, А, В, АВ агглютинино-агглютиногенных реакций и определению резус-фактора.

В предыдущей статье подробно разбирался вопрос с чем связано, что у человека четыре фенотипические и шесть генотипических групп крови: первая — I или О (нулевая), вторая — II или А, третья — III или В и четвертая — IV или АВ.

Кровь людей с I (или О нулевой) группой крови подходит всем людям — они универсальные доноры. А вот кровь людей с IV (или АВ) группой крови можно переливать только людям с такой же группой крови, но принять их организм «согласен» любую кровь — они универсальные реципиенты. Среднее положение занимают люди со II (A) и с III (В) группами крови — им годится одноименная группа крови и кровь универсальных доноров.



Конечно, просто жизненно необходимо знать, какая у вас группа. Все мы в течение жизни являемся либо донорами своей крови, либо реципиентами и нельзя допустить, чтобы при переливании произошло объединение несовместимых групп крови.

А что такое резус фактор?

Даже после того как при переливании крови стали всегда строго учитывать совместимость групп по системе А,В,АВ,О, результаты иногда были удручающими. Лишь в 1940 году был описан особый белок резус, являющийся тоже агглютиногенным. Он содержится в крови людей и обезьян (макак резусов), поэтому и получил такое название.

У 85% людей в крови содержится этот агглютиноген, их называют резус-положительными (Rh + ), а у 15% людей в крови нет этого белка, их называют резус-отрицательными (Rh-).

После переливания резус-положительной крови резус-отрицательному человеку в крови у него в ответ на чужеродный белок вырабатываются антитела. Повторное введение этому человеку резус-положительной крови может вызвать агглютинацию эритроцитов и тяжелое шоковое состояние.

Поэтому резус положительным людям (а их подавляющее большинство), всегда подходит кровь любых по резус-фактору людей. А резус-отрицательным следует переливать кровь резус-отрицательных людей (хотя один раз то в жизни можно и кровь резус-положительного человека, но это должно быть где-то строго зафиксировано).



Из-за важности рассматриваемой проблемы совместимости групп крови, с прошлого года в варианты заданий ЕГЭ линии С6 уже были включены задачи на определение групп крови человека. И хотя в этих заданиях авторы-составители приводят краткую информацию о генах, определяющих разные группы крови, дополнительное разъяснение этой темы со страничек моего блога считаю совсем не лишним.

Главное при решении этих задач надо помнить генетическую подоплеку формирования у человека четырех фенотипических групп крови:

Во-первых, за группу крови у людей отвечает ген, обозначаемый ген I. Но в отличие от большинства других генов этот ген I имеет не два аллельных состояния, а три: I О , I А , I В .

Во-вторых, оказалось, что для этих трех аллельных генов существуют разные закономерности их фенотипического проявления (доминантность и кодоминантность).

Ген I А , например, доминирует над геном I О (когда они объединяются в одной зиготе будущего организма — один от отца, другой от матери); точно также и ген I В оказался доминантным над I О .

Но при совместном появлении в зиготе генов I А и I В , ни один из них не доминирует над другим, они равносильны, кодоминантны, поэтому формируют новый признак организма — IV или АВ группу крови.



Что же, надеюсь вам теперь понятно, почему у людей четыре фенотипических групп крови, чем они отличаются генетически и мы можем закрепить материал, разобрав примеры конкретных заданий ЕГЭ предыдущих лет.

Задача 1. Перепутали детей в родильном доме, как быть?

В родильном доме перепутали двух мальчиков. Родители одного из них имеют А и О группы крови. Родители другого — А и АВ группы крови. Исследование показало, что дети имеют О и А группы крови. Определите, кто чей сын?

1. Распишем генотипы групп крови родителей на основе их фенотипов:

а) для первой пары родителей: один родитель c группой крови А имел генотип I А I А или I А I О , другой — с группой крови О имел генотип только I О I О ;

2. Гаметы, производимые каждой из пар родителей

3. Распишем генотипы групп крови детей с известными фенотипами групп крови О и А

Мы видим, что первый ребенок с О группой крови мог родиться только от первой пары родителей, поскольку только у них обоих присутствовали аллельные гены I О (хотя они могли быть родителями и второго ребенка, если он гетерозиготен I А I О ).

Вторая супружеская пара могла являться родительской по отношению ко второму ребенку, но ни при каких обстоятельствах они не могли быть родителями первого ребенка.

Задача 2. Когда можно по группам крови детей точно определить группы крови родителей

У мальчика с группой крови О родилась сестра в группой крови АВ. Что можно сказать о группах крови и генотипах их родителей? Рождение детей с какими еще группами крови можно ожидать в этой семье?

Генотип мальчика с О группой крови: I О ,I О , а генотип его сестры с четвертой АВ группой крови: I А I В .

1.Таким образом, кровные дети с одной семье, имеющие все три аллельных гена групп крови могли появиться однозначно только от родителей гетерозигот со второй I А I О и третьей I В I О группами крови.

2. В этой семье возможно появление детей еще с такими же как у родителей группами крови второй и третьей и тоже только гетерозигот: I А I О и I В I О .

Задача 3, Необходимо анализировать разные варианты

У матери 3 группа крови, а у отца 4. Определите возможные группы крови детей, если известно, что аллели А и В доминируют на аллелем О, а между собой А и В являются кодоминантными.

Обратите внимание, что в условии задачи (видимо, для простоты написания) для обозначения аллелей гена группы крови I, его аллели записаны не как индексы сверху от гена I, а просто отдельными буквами: А, В, О. Воспользуемся и мы в дальнейшем этой упрощенной записью генотипов особей с различными группами крови.

Генотип матери с третьей группой крови может быть как ВВ (если гомозигота) или ВО (если гетерозигота). Генотип отца четвертой группы крови — только АВ.

Таким образом, если мать была гомозиготной с генотипом ВВ, то у детей может быть только третья группа (генотип ВВ) или четвертая (генотип АВ).

Если мать гетерозиготная ВО, то у детей может быть вторая группа крови (генотип АО), третья группа крови (ВВ и ВО) и четвертая группа крови (АВ).

Задача 4. На совместимость крови матери с кровью ее детей, крови сестры с кровью брата

Известно, что кровь О группы можно переливать всем людям, кровь А группы — только лицам А или АВ групп, кровь В группы — только лицам В или АВ групп, а кровь АВ группы — только людям АВ группы. Всегда ли возможно переливание крови матери детям, а крови сестры — ее родному брату?

Задание это отличается от обычных генетических задач, мы не можем расписать как положено по пунктам: генотипы родителей, их гаметы, генотипы и фенотипы их возможного потомства. Как же поступать в таких случаях. Прежде всего надо быть хорошо подготовленным, что называется «быть в теме», чтобы не просто ответить кратко «да» или «нет», а, по возможности, показать глубину ваших знаний, то есть представить полно все возможные варианты событий.

Как будем отвечать на это задание? Поскольку нам в условии задания ничего не говорится об отце, то нужно просто наиболее полно разобрать все гипотетически возможные варианты совместимости переливания крови. И здесь абсолютно нет никакой разницы в обосновании пригодности крови матери для своих детей или крови сестры для ее родного брата.

Сначала можно рассмотреть контрастные варианты, затем остальные, что бы была какая то логика в построении ответа.

1. Если у матери первая I группа крови (или О нулевая), то да — она всегда может быть донором своим детям, независимо от того какой второй аллельный ген достался ее ребенку от отца. С группой крови О — она вообще универсальный донор для всех людей на свете.

2..Если у матери IV группа крови (или АВ), то ее кровь будет пригодна для переливания только детям с такой же группой крови. Поскольку такая группа крови вообще самая редкая, то можно говорить, что мать с IV группой крови почти никогда не сможет являться донором своим собственным детишкам.

3. Если же у матери II (A) или III (B) группы крови, то ее кровь можно использовать для переливания лишь тому ребенку, у кого одноименная группа крови или если он имеет IV группу.

Все эти варианты ответов совершенно подходят для обоснования пригодности или непригодности сестры в качестве донора крови своему родному брату.

Задача 5. Объясняющая наследование резус-фактора

Известно, что при переливании крови, надо учитывать не только группы крови по системе агглютинино-агглютиногенных реакций О, А, В и АВ, но и знать резус-фактор. Наличие резусного антигена является доминантным признаком, поэтому обозначают его R большим, а его отсутствие — признак рецессивный, поэтому обозначают его буквой r малая. Какие дети могут появиться от брака родителей со всеми возможными сочетаниями резус-фактора?

Как поступить с оформлением данной задачи. Всегда надо следовать какой-то определенной логике построения ответа. Например, можно идти от простого к сложному (что в этом задании очень уместно). Я предлагаю вам построить ответ по аналогии с опытами Менделя. Этим вы покажете свое глубокое знание предмета.

А в чем здесь аналогия? Какие родительские генотипы брал Мендель для первого скрещивания? Правильно, чистые линии, то есть когда оба аллельных гена в генотипе одного организма, отвечающих за проявление какого-то признака, находятся в одинаковом состоянии: у одного организма они оба доминантные, а у другого — оба рецессивные.

В применении к данной задаче первая наша супружеская пара будет иметь генотипы: RR х rr

Таким образом, от гомозиготных по наличию или отсутствию резус-фактора родителей все дети рождаются только резус-положительными и гетерозиготными по генотипу. Наглядная демонстрация первого закона Менделя: «закон единообразия гибридов первого поколения».

Ну естественно вторая наша супружеская пара будет: оба родителя резус-положительные, гетерозиготные по генотипу: Rr х Rr

Это демонстрация второго закона Менделя: «закон расщепления признаков в потомстве 1:2:1 по генотипу и 3:1 по фенотипу». Действительно, от родителей с резус-положительной кровью (но гетерозигот) рождаются дети как резус-положительные (большинство), так и резус-отрицательные (25%).

Можем ли мы и дальше проследить на данном примере установление третьего закона Менделя (закона независимого наследования признаков)? Нет, очевидно не можем, так как третий закон выводится из дигибридного скрещивания.

Но тогда какую логику мы должны применить к выбору следующего варианта скрещивания? Например, вот такую. Покажем, что нам известно что такое «анализирующее скрещивание». В чем оно заключается? В ответе на вопрос: чистой или гетерозиготной является особь с доминантным фенотипом?

Для этого анализируют потомство этой особи от скрещивания с чистой (то есть гомозиготной) рецессивной особью. А) если все потомство единообразно, то наша исследуемая особь гомозиготна. Б) если обнаруживается расщепление в потомстве, то она гетерозиготна.

Наш выбранный первый вариант решения задачи и есть ответ на вопрос анализирующего скрещивания (А), тот есть мы его уже учли. А для варианта анализирующего скрещивания Б исследуем потомков такой вот (уже третьей из возможных) супружеских пар : Rr х rr

F: Rr и rr (расщепление 1:1 и по генотипу, и по фенотипу — все возможные потомки повторяют и генотип и фенотип обоих родителей).

Таким образом, если при анализирующем скрещивании наблюдается расщепление в потомстве, то генотип неизвестной первой особи гетерозиготен Rr.

Остался самый простой вариант (с которого можно было бы и начинать, следуя логике от простого к сложному). От четвертой из возможных сочетаний супружеских пар, когда оба родителя имеют резус-отрицательную кровь: rr x rr могут появиться дети тоже только резус-отрицательные и все с генотипом rr.

Задача 6. Одновременное изучение наследования группы крови и цвета глаз

В семье, где родители кареглазые, имеется четверо детей. Двое голубоглазых имеют 1 и 4 группы крови, двое кареглазых 2 и 3 группы крови. Определите вероятность рождения следующего ребенка кареглазого с 1 группой крови, если известно, что карий цвет глаз доминирует над голубым обусловлен аутосомным геном.

Чтобы не загромождалось оформление этой задачи, буквенные выражения генотипов по группам крови будем записывать снова, как и в задаче 3, не индексами при гене I, а просто: генотип первой группы крови OO, второй АA или AO, третьей ВB или BO и четвертой АВ.

Тогда цвет глаз, обозначим, чтобы не путаться с группами крови, буквой С большое и с маленькое. Генотип людей с карими глазами будет СС или Сс, а с голубыми — сс.

Поскольку генотипы рожденных детей почти известны – это OOсс, ABсс, А-С- ,B-С-, то кареглазые родители были по этому признаку (цвету глаз) оба гетерозиготы Сс, иначе бы у них не появились голубоглазые дети. А ребенок с группой крови ОО мог появиться только в том случае, если они к тому же были геретозиготны и по группам крови AO и BO.

Итак, мать и отец обязательно были дигетерозиготы, то есть гетерозиготны и по группам крови, и по цвету глаз. Чтобы найти всевозможное потомство от родителей с генотипами АОСс и ВОСс, надо построить решетку Пеннета 4 х 4 = 16 вариантов (от скрещивания гамет АС, Ас, ОС, Ос с гаметами ВС, Вс, ОС, Ос).

Ответ: вероятность рождения ребенка ООС- (с первой группой крови и кареглазого) равна трем шестнадцатым или примерно 19%.

Задача 7. Как по группам крови детей определить группы крови родителей?

У детей в семье 1,2,3, группы крови, какие группы крови могут быть у их родителей?

Так как дети одних и тех же родителей имеют генотипы ОО (первая группа крови), АА или АО (вторая группа крови), ВВ или ВО (третья группа крови), то у одного из родителей генотип второй группы крови будет гетерозиготным АО, и у другого с третьей группой крови тоже гетерозиготный ВО. Иначе не появится ребенок с первой группой крови ОО.

Задача 8. О том, что для решения задачи необходимо использовать всю предложенную информацию

Какая будет группа крови у девочки, если у матери II группа крови (резус-фактор положительный), у отца IV группа крови (резус-фактор положительный), а у сестры III группа крови (резус-фактор отрицательный).

Очевидно, что по группе крови мы можем сразу записать полностью лишь генотип отца АВ (IV группа), а вот генотип матери со II группой мог бы быть как АА, так и А0. Но, так как известно, что у этой девочки есть сестра с III группой крови, то генотип сестры мог быть только В0 (так как ген В от отца, то значит ген 0 должен быть от матери).

Поэтому мы можем теперь точно указать генотип матери, он будет А0. Гаметы матери: А,0; гаметы отца А,В. Из всех возможных сочетаний гамет равновероятно образование генотипов АА, А0, В0, АВ. Значит у девочки возможные группы крови: II (50%), III (25%)или IV (25%).

И для определения резус-фактора у этой девочки нам помогает информация по резус-фактору ее сестры. Так как генотип сестры был резус-отрицательным, то есть rr, то генотипы обоих резус положительных родителей обязательно могли быть только гетерозиготными, то есть Rr.

От гетерозиготных родителей по резус-фактору, возможно рождение детей со следующими генотипами: RR,2Rr,rr, то есть эта девочка могла быть с вероятностью 75% резус-положительной, а с вероятностью 25% — резус-отрицательной.

Задача 9. С каким резус-фактором будут дети при всех возможных сочетаниях этого фактора у родителей

Какие дети могут появиться от брака двух резус-отрицательных родителей? В случае если один из родителей резус-отрицательный, а другой – резус-положительный? От брака двух резус-положительных родителей?

Обозначим: аллель R — резус-положительный; аллель r — резус-отрицательный.

1. P: rr * rr от двух резус-отрицательных родителей потомство может быть только резус-отрицательным.

2. Здесь надо рассмотреть два варианта, когда второй родитель гомозигота и когда гетерозигота:

а) P: rr * RR, то все дети будут только резус-положительными гетерозиготами с генотипом Rr;

б) P: rr * Rr, то дети будут rr и Rr, то есть резус-отрицательными и резус-положительными в соотношении 1: 1.

3. А здесь требуется рассмотреть сразу три варианта:

а) P: RR * RR — все дети только RR — резус-положительные;

б) P: Rr * RR — дети Rr и RR по генотипу и все резус-положительные по фенотипу;

в) P: Rr * Rr — дети RR:2Rr:rr по генотипу 1:2:1, а по фенотипу 3:1 (3 резус положительных к 1 резус- отрицательному).

Для тех, кто хочет быстро разобраться как надо решать подобные задачи по генетике, могу предложить мою платную книжицу .

У кого будут вопросы по решению генетических задач к репетитору биологии по Скайпу, кому необходимо платно решить задачи с пояснениями обращайтесь в комментарии, можно связаться по email.

Садыков Борис Фагимович, 1956 г. рождения. Кандидат биологических наук, доцент. Живу в замечательном городе Уфе. Преподавательский стаж с 1980 года. Репетитор биологии по Скайпу.

Здравствуйте! Пожалуйста помогите определить отца девочки, у которой 1+ группа, у её матери 1- , у одного партнёра 1+, а у второго 3+?

Здравствуйте, Марго! Только генотип матери и дочери можно определить однозначно. У матери OOrr, у дочери ООRr (поскольку она резус-положительная, то имеет аллель R-большое, а аллель r-малая у неё от матери). А вот генотипы обоих «партнеров» нельзя определить однозначно. Первый партнер может иметь генотипы OORR или OORr (имея любой из этих генотипов он может быть отцом). Второй партнер может иметь даже 4-ре генотипа: BBRR, BBRr, BORR, BORr (если у него генотип BORR или BORr он тоже может быть отцом девочки).

Спасибо. А если мужчина с 1+ сдаст анализы на генотип, то могут ли по ним определить отцовство?

Да, довольно дорогостоящий анализ ДНК ребенка и предполагаемого отца позволит на 100% подтвердить или опровергнуть отцовство.

Извините, я не совсем понимаю, анализ на генотип и есть анализ ДНК? На него и в правду нет средств…

Да, Марго, анализ на определение ДНК — это и есть анализ на определение всего генотипа организма (около 25 тысяч генов). Когда мы в конкретных заданиях произносим «генотип», мы имеем в виду лишь один, два (редко три) изучаемых гена.

Ну хорошо, а возможно ли сдать анализ только на определение у партнёра с 3+ тех 4-х генотипов не переплачивая за остальные 25 тысяч генотипов?

Я не знаю возможности удешевления анализа ДНК. Анализ на ДНК — это анализ всех примерно 25 тыс.генов одного человека и анализ всех 25 тыс. генов другого человека. На основании этого делают вывод о их родстве (или отсутствия родства). По группам крови и резус-фактору лишь в некоторых случаях тоже можно сделать однозначные выводы. Например, если бы в Вашем случае один из партнеров имел 4-ю группу крови (генотип АВ) — он точно не являлся бы отцом ребенка с 1-й группой.

Здравствуйте! Для установления отцовства не требуется анализа всех генов. Для этого достаточно провести анализ аллельного статуса небольшого количества маркеров (маркерных локусов), например,коротких тандемных повторов, так называемых, STR локусов. Каждый из них представлен в популяции несколькими аллелями, встречающимися с разной частотой. Можно это сделать и на основе анализа полиморфизма однонуклеотидных замен, но тогда потребуется значительно больше маркеров, так как данный тип полиморфизма всего лишь диаллельный. В коммерческих наборах используются именно STR локусы.

Андрей, поблагодарю Вас от лица Марго, может быть Ваш комментарий ей окажется полезным.

7.Наследование групп крови по система ав0, Rh, mn.

Генетико-физиологическая характеристика системы АВ0

С точки зрения генетики, наиболее изученной является система АВ0, определяющая I (0), II (А), III (В) и IV (АВ) группы крови. На поверхности эритроцитов могут находиться агглютиногены (антигены) А и В, а в плазме крови – агглютинины (антитела)  и . В норме одноименные агглютиногены и агглютинины совместно не обнаруживаются. Нужно отметить, что А- и В-антигены образуют многочисленный ряд антигенов (А1, А2 . A; В1, В2 …В).

Наследование групп крови системы АВ0. В системе АВ0 синтез агглютиногенов и агглютининов определяется аллелями гена I: I 0 , I A , I B . Ген I контролирует и образование антигенов, и образование антител. При этом наблюдается полное доминирование аллелей I A иI B над аллелем I 0 , но совместное доминирование (кодоминирование) аллелей I A и I B . Соответствие генотипов, агглютиногенов, агглютининов и групп крови (фенотипов) можно выразить в виде таблицы:

В норме образуются нормальные антитела (агглютинины), которые синтезируются в очень небольших количествах; они относятся к классу М; при иммунизации чужеродными антигенами вырабатываются иммунные антитела класса G (подробнее различия между нормальными и иммунными антителами будут рассмотрены ниже). Если по каким-либо причинам агглютиноген А встречается с агглютинином  или агглютиноген В встречается с агглютинином , то происходит реакция агглютинации – склеивания эритроцитов. В дальнейшем агглютинированные эритроциты подвергаются гемолизу (разрушению), продукты которого ядовиты.

Из-за кодоминирования наследование групп крови системы АВ0 происходит сложным образом. Например, если мать гетерозиготна по II группе крови (генотип I A I 0 ), а отец гетерозиготен по III группе крови (генотип I B I 0 ), то в их потомстве с равной вероятностью может родиться ребенок с любой группой крови. Если у матери I группа крови (генотип I 0 I 0 ), а у отца IV группа крови (генотип I A I B ), то в их потомстве с равной вероятностью может родиться ребенок или со II (генотип I A I 0 ), или с III (генотип I B I 0 ) группой крови (но не с I, и не с IV).

Белок на мембране эритроцитов. Присутствует у 85% людей — резус-положительных. Остальные 15% — резус-отрицательны.

Наследование: R- ген резус-фактора. r — отсутствие резус фактора.

Родители резус-положительны (RR, Rr) — ребенок может быть резус-положительным (RR, Rr) или резус-отрицательным (rr).

Один родитель резус-положительный (RR, Rr), другой резус-отрицательный (rr) — ребенок может быть резус-положительным (Rr) или резус-отрицательным (rr).

Родители резус-отрицательны, ребенок может быть только резус-отрицательным.

Резус-фактор, как и группу крови, необходимо учитывать при переливании крови. При попадании резус фактора в кровь резус-отрицательного человека, к нему образуются антирезусные антитела, которые склеивают резус-положительные эритроциты в монетные столбики.

В 1927 году К. Ландштейнер и П. Левин обнаружили, что при введении кроликам красных кровяных телец человека у них вырабатываются антитела к антигенам человеческих клеток. Исследуя антитела к кровяным тельцам разных людей, Ландштейнер и Левин опознали два типа антител, которые назвали М и N. Кровяные клетки типа М вызывали у кроликов производство антител М, а клетки типа N — антител типа N. Выяснилось, что каждый человек имеет кровь типа М, типа N или типа MN — смести антигенов М и N.

Передача этих типов по наследству носит следующий характер:

Это значит, что люди с кровью типа М или N — гомозиготы по разным аллелям одного гена, а люди с кровью типа MN — гетерозиготы по обоим выраженным аллелям. Ген этого признака назван L в честь Ландштейнера; его два аллеля обозначаются как LM и LN. Эти аллели кодоминантны, то есть в гетерозиготах L M и L N они выражены в равной степени. Модель объясняет три вышеописанные схемы наследования. Кроме того, если родители гетерозиготы, то каждый из них образует половину гамет L M и половину гамет L N , которые, объединяясь, дают L MN .

Система групп крови АВО

Считается, что система групп крови ABO, впервые была обнаружена австрийским ученым Карлом Ландштейнером (Karl Landsteiner), который определил и описал три различных типа крови в 1900 году. За свою работу он был удостоен Нобелевской премии по физиологии и медицине в 1930 году. Через недостаточно тесные связи между научными работниками того времени, значительно позже было установлено, что чешский серолог (врач, специализирующийся на изучении свойств сыворотки крови) Ян Янский (Jan Janský) впервые независимо от исследований К. Ландштейнера выделил 4 группы крови человека. Однако именно открытие Ландштейнера было воспринято научным миром того времени, тогда как исследования Я. Янского были относительно неизвестными. Однако на сегодня, именно классификация Я. Янского до сих пор применяется в России, Украине и государствах бывшего СССР. В США, Мосс опубликовал собственную, очень похожую работу в 1910 году.

Антиген H является важным предшественником антигенов системы групп крови АВО. Локус H находится на 19 хромосоме. Он состоит из 3 экзонов, которые охватывают более 5 Кб геномной ДНК и кодирует деятельность фермента фукозилтрансферазы, отвечающего за производство антигена Н на эритроцитах. Антиген Н — это углеводная последовательность в которой углеводы, в основном связаны с белком (незначительная их часть соединенная с функциональной группой церамидов). Антиген состоит из цепочки β-D-галактозы, β-DN-ацетилглюкозамина, β-D-галактозы и 2-связанных между собой молекул, α-L-фукозы, которые соединяются с молекулами белка или церамида.

Анти-А и анти-В антитела (которые еще называются изогемагглютинины), которых нет у новорожденных, появляются в первые годы жизни. Они являются изоантителами, то есть, образуются в организме человека и вступают в реакцию с антигенами того же вида (изоантигены). Анти-А и анти-В антитела класса М (IgM) обычно не поступают к плоду через плаценту, то есть не попадают в кровоток плода. В организме людей с О-группой могут образовываться антитела АВО класса G (IgG).

Вполне вероятной является версия, согласно которой, продовольственные и экологические антигены (антигены бактерий, вирусов или растений) имеют эпитопы похожие на гликопротеины антигенов А и В. Соответствующие антитела, образующиеся против этих окружающих антигенов в первые годы жизни могут перекрестно реагировать с АВО- несовместимыми эритроцитами, которые позднее, при переливании крови вступают в связь.